

SQL Smuggling

Or,

The Attack That Wasn't There

Comsec Consulting Research
By Avi Douglen
Senior Consultant

Reviewed by Shay Zalalichin
AppSec Director

November, 2007

UK ● Netherlands ● Israel ● Poland ● Turkey

2

Introduction

SQL Injection is a common, well-understood application-level attack that misuses the trust
relationship between the application and the database server. This relationship is exploited in
order to attack the database directly through the application, or to use the database server in
order to attack other systems in the organization. Several applicative mechanisms exist for
protection against SQL Injection attacks, including input validation and use of Stored
Procedures.

This paper will present a new class of attack, called SQL Smuggling. SQL Smuggling is a
sub-class of SQL Injection attacks that rely on differences between contextual interpretation
performed by the application platform and the database server.

While numerous instances of SQL Smuggling are commonly known, it has yet to be
examined as a discrete class of attacks, with a common root cause. The root cause in fact
has not yet been thoroughly investigated; this research is a result of a new smuggling
technique, presented in this paper. It is fair to assume that further study of this commonality
will likely lead to additional findings in this area.

SQL Smuggling attacks can effectively bypass standard protective mechanisms and succeed
in injecting malicious SQL to the database, in spite of these protective mechanisms. This
paper explores several situations wherein these protective mechanisms are not as effective
as assumed, and thus may be bypassed by malicious attackers. This in effect allows an
attacker to succeed in "smuggling" his SQL Injection attack through the applicative
protections, and attack the database in spite of those protections.

Variations between platforms include well-known differences, such as product-specific syntax.
Likewise, previous research has been done, extensively examining techniques for evading
signature-based detection. However, those papers describe specific techniques, without
examining the common root cause mentioned above. In addition, we will describe a new
addition to this class of attack, based on differences in the way certain database servers
handle Unicode homoglyphs [1].

The basic premise asserted by this paper is that more attention needs to be paid to the
inherent logic employed by the database server. This is contrary to common attitudes, where
the database is assumed to be a static datastore that does whatever it is told to do. In fact,
database servers are complex beasts, and often implement their own layer of interpretations.
As such, validation checks need to be as restrictive as possible, taking the context of the
specific datasource into consideration.

Moreover, additional research in this area is required, further examining the interaction
between the application and the database platform, explicitly exploring the conversions that
take place during the course of communication. Database vendors should also consider this
interaction, and take appropriate steps to mitigate any implicit effects.

3

Background

SQL Injection Prevention

It is commonly accepted that strong input validation can prevent SQL Injection attacks. Of
course, additional mitigations are often recommended as best practices, such as only
accessing Stored Procedures, using appropriate Command / Parameter objects (in
programming languages that support them), Least Privilege, etc.

While these are all good ideas for defense in depth, the chief safeguard against malicious
input is always validating input. Specifically, OWASP defines [2] proper validation as including
the following steps:

1. Escape apostrophes (and other meta-characters), e.g. with two apostrophes;

2. Ensure numeric fields really look like numbers;

3. Check if the inputs are within your expectation (e.g. 0 < age < 120, login Id without
space, etc.);

4. The apostrophe-escaped input should NOT be further en/decoded by any other
coding scheme.

5. Additionally, it is recommended best practice to block input that "looks" like SQL, such
as "UNION SELECT", "INSERT", etc. This can add an additional layer of "Defense In
Depth" for some scenarios.

Traditional Smuggling Attacks

Smuggling attacks are based on sneaking data past a point where prohibited without
detection (e.g. across a network, or into a Web server), by "hiding" the data, often in plain
sight. For instance, this includes causing the data to look like permitted data. Another method
would be to pass irrelevant data past the prohibited point, in a format that can be
reconstructed into the forbidden data once it has safely passed the detection point.

A lot of research has been done in this area, specifically pertaining to detection evasion [3].
One specific class of smuggling attack was discovered several years ago, HTTP Request
Smuggling (HRS) [4]. This attack relies on differences between the ways various entities
implement the HTTP RFC, and resulting discrepancies in interpreting malformed HTTP
requests [5].

It is important to note that HTTP Request Smuggling is based on the fact that the second,
malicious, request does not exist as an independent request entity, in the context of the HTTP
intermediary (e.g. Web proxy, cache, etc.). This is in contrast to typical smuggling techniques,
wherein the malicious data exists, but it is simply in a different textual format so as to be
unrecognizable.

4

Introducing SQL Smuggling

Consequently, our research, together with discoveries in the field, has shown the necessity to
define a new sub-class of SQL Injection attacks: SQL Smuggling. We define SQL Smuggling
as SQL Injection attacks that can evade detection, as a result of different interpretations of
the malicious data. Specifically, protective mechanisms – including data validation by the
application, Web Application Firewalls (WAF), IDS, etc. – will not recognize or block the
malicious input; however, the database server will in fact accept the submitted input as valid
commands.

As described above, smuggling attacks can be based on disguising the malicious data to
appear as permitted data to the validation mechanisms, but as the actual malicious payload
to the server. Additionally, the smuggling attack may mutate the malicious payload in such a
way that it would not exist in any meaningful form, within the context of the validation; and yet
the server would transform the mutated data back to the malicious payload. Similarly, SQL
Smuggling includes attacks based on disguising the payload from the validation mechanisms,
and also attacks based on mutating the payload to a non-malicious form, that will be actively
transformed by the database into the malicious payload.

The reason that it is possible to either disguise or mutate the malicious payload into a form
that is not recognized by the validation mechanisms, but can still be properly understood or
translated by the database server, is differences between the parsing engine of the validation
mechanism and the database engine itself.

The causes of these differences can include various factors, only few of which could be
expected by the application developer. Many such differences are a result of proprietary
extensions not defined by the RFC, implemented differently by each specific database
vendor. Certain factors may be implicit and obscure, and as such programmers may often not
be aware of these factors, and thus will not apply appropriate mitigations. Other issues may
even not be widely known, occurring internally to the database engine. As such, the validation
mechanisms, whether they be implemented as applicative checks, WAFs, or IDS, interpret
the data in a different manner than the database server itself.

Regardless of the specific source of discrepancy between the platforms, SQL Smuggling
includes SQL Injection attacks that do not exist in the context in which the validation checks
are performed.

This, then, is the chief distinction between SQL Smuggling and standard SQL Injection, and
the rationale for a separate designation: standard protections against SQL Injection, such as
data validation as described above, will not thwart SQL Smuggling. Typically data validation is
based on textual interpretation, and validation thereof; however, database engines do more
than simple textual parsing, and employ additional internal logic.

For this reason, it will never be possible to block a closed list of SQL Smuggling vectors,
since to do so it would be necessary to fully implement all internal logic for each database
platform. Often, much of this logic is not even publicized. This goes far beyond evasion of
textual signatures, since in this case the string data does not even contain the textual
payload, in any form whatsoever. This point should be emphasized: once the malicious data
is mutated, searching for strings of any sort will fail, since the strings do not exist at the time
of validation, but are "created" by the database server itself. Simply put, you cannot block
data that is not there.

5

Simple SQL Smuggling

There are several forms of well-known attack vectors, which are commonly known by other
terms. According to the above definition, these too can be seen as SQL Smuggling, though
these were not denoted as such until now. Following are some examples of well-known SQL
Injection vectors, which are in essence SQL Smuggling.

1. Platform-Specific Syntax

Most database servers support extensions to standard SQL syntax, in addition to
proprietary built-in functions and commands. Specifically, MySQL supports escaping
meta-characters through the use of the backslash character ("\"). For instance, on MySQL
a quote can be escaped in at least two ways, either double-quoting (''), or backslash and
quote (\'). These are both valid escape sequences, and can be safely embedded within
strings.

If application code validates user input by simply escaping quotes, without recognizing the
specific context of MySQL, the validation mechanism may allow actual quotes to pass
unescaped. This may occur if the programmer is not familiar with the specifics of MySQL,
or if the application architecture supports configurative definition of the database server
and database type at runtime. External devices, such as a WAF, support only a limited
number of dialects, and thus may not recognize a given variation – the classic drawback
of blacklisting forbidden values, i.e. it is always possible that there will be another
dangerous value that is supported by an uncommon database product.

For instance, if the validation mechanism is based (amongst other factors) on doubling
any quotes, the "\' " sequence will be translated to "\' ' ". This will be understood by
MySQL as: "\' " (escaped quote) followed by ' (unescaped quote). The result is, of
course, successful SQL Injection.

This is the most trivial of SQL Smuggling attacks, wherein application code is not aware of
the context within which the input data will be interpreted. In actuality, there may be
additional instances of slight differences in syntax between database vendors, such as
differing commands or functions between vendors' proprietary extensions to ANSI SQL
(e.g. MSSQL's T/SQL, Oracle's PL/SQL, MySQL, PostgreSQL, etc.). The proprietary built-
in functions may also be exploited unless specifically searched for and blocked by the
validation mechanism, e.g. MSSQL's OPENROWSET command. Again, if the application's
validation code is sensitive to a single variant, but applied to a different one, the validation
will obviously not succeed.

It should be noted that a proper WAF product would recognize, and appropriately block,
the chief variants, such as those for the most popular platforms including the above
mentioned MySQL issue, in addition to MS-SQL, Oracle, DB2, and perhaps other
common products. However, while this may provide some protection in most cases, it is
still improbable to expect the WAF to recognize and be familiar with all possible variants,
including those supported by less popular database products that are not as well-known.
Moreover, it can be expected that the WAF might not cover every possible aspect of a
given SQL dialect, not to mention that there may be conflicts between interpretations
depending on choice of dialect.

2. Signatures Evasion

Many network protection devices, such as IDS/IPS and WAFs, base much of their
protection on recognizing attack patterns, such as input data containing SQL-like strings.
Numerous methods have been published [6] to evade detection and prevention including:

• Innovative use of whitespace (space, tab, newline…);

• Inline comments (using /*…*/);

6

• Different encodings (URL encoding, Hex encoding, etc.);

• Dynamic concatenation and execution of string values (e.g. CHAR() or "EXEC
('INS' + 'ERT INTO…') ").

Using any of these techniques, it is possible to create valid SQL commands that are
understood and accepted by the database's parsing engine, and yet are not recognized
by the validation checks. Note that it is not relevant if these checks are performed by the
application code, application firewall, IDS/IPS, or any other validation entity – in any case,
they attempt to validate the string inputs based on an explicit blacklist of malicious
commands or patterns; this blacklist is finite and cannot specify every possible attack.

Once again, the attacker can succeed in penetrating system defenses to perform SQL
Injection, by smuggling the payload in a form that is not explicitly blocked by the validation
checks. Note that there are vast possible combinations and permutations of malicious
data that would evade the validation checks. These are also partially dependant on
differences between the database platforms and versions.

Unicode Smuggling

Theory

There are numerous Unicode characters that are "similar" to other characters, such as those
in the base ASCII character set. These are known as homoglyphs.

Our research discovered a surprising finding: some database servers support automatic
translation between supported codepages. E.g. a Unicode value may be automatically
converted to a different character in the local character set, according to a "best fit" heuristic,
even though these characters are not equivalent and are computationally unequal.

When string data containing these characters are forced from Unicode into another character
set, the database server may perform the "best fit" matching, translating some of these
characters to whatever character is deemed visually equivalent in the target codepage. For
instance, the Unicode Ā character (U+0100) may be translated to the regular ASCII A
(U+0041). As surprising as this is, this automatic translation occurs for numerous other
characters, as many homoglyphs exist.

Since this is performed by the database, any mechanism that attempts to filter or sanitize
values before passing them to the DB may fail to recognize certain characters, which will be
"created" as a result of the transformation by the database server. Again, this translation
occurs after all validation checks.

And this is where the interesting (or scary) part starts – the Unicode homoglyph translation is
not limited to base alphabet characters... Specifically, the Unicode character U+02BC
(modifier letter apostrophe) can be translated by the database server to a simple quote – '
(U+0027). There are, of course, many other similar examples.

The result of this translation is quite clear – certain strings can evade applicative filters, such
as those intended to validate input on the application server and prevent SQL Injection.
Though the string is seemingly innocent when validated by the application, it is potentially
dangerous when these homoglyphs are translated by the database. In particular, since a
quote can bypass application filters and yet be recognized by the database, malicious input
may "break out" of quoted parameters, which obviously can result in SQL Injection attacks.

Our research in this area shows that this is the most extreme example of SQL Smuggling,
since the actual character itself does not even exist at the time of validation. In reality, the
meta-character is created by the database server itself, as a result of the homoglyphic
transformation. As such, no form of applicative checks would detect this character.

It should be noted that, although this specific vector can likewise be blocked (i.e. disallow the
U+02BC character), this is solely a representative example; it is not feasible to explicitly block
all such database behavior, both expected and unexpected, for each database platform and
version, undocumented features and version-specific bugs included.

7

Technical Details

As an example, note the following trivial Stored Procedure:

create procedure GetData (@param varchar (20)) as

begin

declare @s varchar (200)

select @s = 'select * from dataTable where name = ''' + @param + ''''

exec (@s)

end

This SP may be called from a Web page, which executes validation code before passing the
input to the SP. At a minimum, this validation code either verifies that the input does not
contain a quote, or sanitizes it to double any existing quote. For instance, the validation code
may be using string.Contains() , string.Replace() , Regular expressions, etc. It is
also possible that this Web page is behind a finely-tuned Web Application Firewall that
validates all input and verifies that no quotes are included.

A malicious user or attacker can submit malicious code containing a modifier letter
apostrophe (U+02BC, URL encoded to %CA%BC). This will easily pass applicative validation
code and WAF filters, since these search for an actual quote (U+0027) which does not exist
in the input at this time. Obviously, IDS/IPS systems would also not detect anything amiss.

The validation mechanisms may even search for various encodings of a quote, such as URL
Encoding, UTF-8 encoding, Hex encoding, double encoding, and more – however, U+02BC
is none of these, and is in fact a completely different character value.

Even if the application calls the SP properly, using parameter objects etc., the input will be
passed to the SP in a varchar variable, which typically does not support Unicode values; an
affected database server will promptly translate this character to a standard quote, breaking
the WHERE clause and causing the dynamic execution to execute whatever arbitrary code was
included in the malicious parameter.

It could be noted that the SP in this example does utilize dynamic SQL execution, which
should be avoided (according to accepted Best Practice). However, there are certain
scenarios wherein server-side dynamic SQL is absolutely required, e.g. legacy code, third
party products that include code on the database, and more. Moreover, our experience in the
field shows that many real systems support these complex scenarios, and do in fact require
dynamic SQL in SPs. Aside from that, though popular, it is intended only to serve as yet
another representative example. That said, the typical recommendation for allowing dynamic
SQL within SPs (when they are absolutely necessary), is of course to perform complete input
validation before calling the SP.

This research voids that recommendation, and puts the more complex scenarios at risk. Till
today, input validation was considered by domain experts to be an adequate technique,
sufficient to protect against SQL Injection attacks; however, this is no longer the case!

Applicability

SQL Smuggling can apply to many applications that rely on input validation, either by
applicative code or a WAF. However, not every vector is applicable in all cases: for example,
the MySQL backslash escaping is obviously only relevant to systems based on the MySQL
database, and only if the programmer did not take appropriate steps relevant to the specific
database. Additionally, many signature evasion techniques may not apply to every system.

However, by definition SQL Smuggling can evade detection, and as a general class would
apply to virtually any system relying solely on blacklist validation mechanisms. It is likely that

8

additional forms of Smuggling will be discovered, further broadening the scope. Those
applications that are built on a secure design, and implement a strict white-list validation
mechanism, should be immune to this class of attack.

Regarding Unicode-based SQL Smuggling, this flaw can clearly cause severe damage in
certain situations, though research to date shows that it is currently limited to specific
scenarios, and would probably not be vulnerable if the application had been built according to
best practices in the first place.

However, imperfect applications such as these are numerous, and we have observed
numerous real-world examples in the field. (If only everyone built everything the correct
way…). Furthermore, it is possible that there are complex situations where a design such as
this may be required from the application.

Another important factor to consider is the database platform. Automatic, "best-fit"
homoglyphic transformations are a feature intended to ease user's pain in translating
between "foreign" languages and the local character set. It seems that this homoglyphic
transformation is not supported by all databases. Specifically, Microsoft's SQL Server 2005
does support homoglyph transformation. Older versions of MySQL supported a version of the
Connect/J connectivity library that apparently performed this transformation. We are still
researching other databases.

Recommendations

The only means of preventing SQL Smuggling, in situations where the application would be
otherwise vulnerable, is performing context-based validation. That is, validation checks must
take the characteristics of the database platform into account, including the brand of database
server, defined character sets, and more. (Note that this negates loosely-coupled
architectures, and as such would be even more difficult to implement properly.)

Moreover, validation should be based on a "White-list" of allowed characters. While this has
always been a recommended best practice, many implementations of "Black-list" seemed
sufficient, and impervious to SQL Injection attempts. This research proves that besides being
inefficient and usually incomplete, it can never suffice. Any validation that stops short of
whitelisting the allowed characters (e.g. [a..zA..Z0..9]), will not be complete.

Avoid dynamically concatenating SQL queries for execution by the database. This applies
both to application code and stored procedures. Wherever user input is used directly in a
query, there exists a risk of that input bypassing the applied validations and disrupting the
intended command.

Additionally, never forcefully translate strings from one character set to another. Results may
be unpredictable, and are rarely beneficial. Wherever possible, it is best to remain in a single
character set. If necessary to support more than a single language, the database should be
built using Unicode.

This research presents only the "tip of the iceberg"; we therefore recommend that other
security researchers take part and expand the research done in this area. The interaction
between the application and the database platform should be further examined, and the
myriad conversions that take place during the course of communications must be explicitly
explored.

As for vendors of database software, connectivity libraries, and any of the other myriad
components that play a part in accessing data, we recommend redesigning those products to
minimize implicit database transformations and other platform-specific logic; specifically,
remove support for automatic homoglyph transformation. These products should also be
examined for other behaviors that allow malicious payload to be generated by the server.

9

Conclusion

Our research discovered a new vector of attack, and as such defined a new sub-class of
attacks. This paper proves that an application may be vulnerable to SQL Injection
attacks, even though it does proper input validation before calling a stored procedure,
in contrast to conventional wisdom that input validation is sufficient to protect an application
against SQL Injection. This is of course dependant on the application structure and format of
queries; as such, if an application does follow all relevant best practices (such as not using
Dynamic SQL, etc.), it is mitigated to some extent.

Contrarily, attention should be given to the possibility of evasion of Application Firewalls,
Intrusion Detection/Prevention systems, etc. In effect, an attacker may exploit vulnerable
applications to "smuggle" SQL commands through all the defensive perimeters. As such,
more attention needs to be paid to database server logic, along with any logic performed by
components used to access the database.

Thus, the basic premise is well founded, as more attention needs to be paid to the inherent
logic employed by the database server. This is contrary to common attitudes, where the
database is assumed to be a static datastore that does whatever it is told to do. In fact,
database servers are complex beasts, and often implement their own layer of interpretations.
As such, validation checks need to be as restrictive as possible, taking the context of the
specific datasource into consideration.

Moreover, more research should be done in this area, further examining the interaction
between the application and the database platform, explicitly exploring the conversions,
transformations and other logic that take place during the course of communication.

References

1. Homoglyph, Wikipedia
http://en.wikipedia.org/wiki/Homoglyph#Unicode_homoglyphs

2. "Advanced Topics on SQL Injection Protection", Sam NG, OWASP Feb 2006
http://www.owasp.org/images/7/7d/Advanced_Topics_on_SQL_Injection_Protection.ppt

3. "A Look at Whisker's Anti-IDS Tactics", Rain Forest Puppy, December 1999
http://www.ussrback.com/docs/papers/IDS/whiskerids.html

4. "HTTP Request Smuggling",
Chaim Linhart, Amit Klein, Ronen Heled and Steve Orrin, June 2005
http://www.modsecurity.org/archive/amit/HTTP-Request-Smuggling.pdf

5. "Meanwhile, on the other side of the web server", Amit Klein, June 2005
http://www.modsecurity.org/archive/amit/meanwhile_on_the_other_side_of_the_web_serv
er.txt

6. "SQL Injection Signatures Evasion", Ofer Maor and Amichai Shulman, April 2004
http://www.imperva.com/application_defense_center/white_papers/sql_injection_signatur
es_evasion.html

7. "The Unexpected SQL Injection", Alexander Andonov, January 2007
http://www.webappsec.org/projects/articles/091007.shtml

About Comsec

Comsec Consulting (TASE:CMSC) is a leading security consulting company, helping enterprises design and
incorporate security into their information technology infrastructure and systems. For over two decades, Comsec
has delivered cutting edge, end-to-end information security services to customers from all market sectors across
the globe, including major high-tech firms, telecom operators, major banks and financial institutions, government
bodies and leading industrial corporations. Comsec Consulting provides risk assessments, security planning and
design, develops security policies, procedures and SDLC, performs threat modeling, code reviews and penetration
testing, in addition to security education & training. Comsec Consulting provides these services internationally
through offices in London, Rotterdam, Istanbul, Warsaw and Tel Aviv. Please visit us at: www.ComsecGlobal.com.

